
April 1998 The Delphi Magazine 35

When you have a table with existing data, some
SQL servers are better than others at changing

the structure of that table while preserving the data.
But, in general, the task is a pain. Third-party products
may be available that will manage the task of issuing all
the proper SQL statements to create the table with the
new structure, copy the data from the old table to the
new one, delete the original table, and rename the new
table to the original name. If these products work for
you, fine. But you may find them awkward or inade-
quate and be tempted to write your own. This is
exactly what the developers at Ultimate Software
Group did. With a project containing 200 plus tables
and over 5,000 fields, you can see that the need to
modify a table’s structure may come up from time to
time: a tool tailor-made for this job would be useful.

Originally, TBatchMove was used to copy the data
from the old table to the new table. TBatchMove had an
interesting side effect when a default was added to a
column. When TBatchMove copies null data into a
column with a default constraint, the null is recoded to
the default value. Normally, SQL does not inherently
convert null values to defaults. A column default is
applied only when the column is omitted completely
from an INSERT statement. If the column is present in
the INSERT and a null value is assigned to it, then it gets
a null value. So how is TBatchMove performing this
magic?

Well, we’ve sort of answered our own question in the
previous paragraph. TBatchMove generates a separate
INSERT statement for each row in the table. When it
detects a null value in a column, it omits that column
from the INSERT statement. Figure 1 shows some
sample data copied with TBatchMove and the generated
INSERT statements. The result of this is that the row in
the new table gets the column’s default value, if any. If

there is no default on the column, then it gets a null
anyway.

Now the problem with TBatchMove is that it’s slow. We
can do the same thing with a single SQL statement that
runs considerably faster. We can write an INSERT state-
ment that accepts its values from a SELECT statement as
shown below. This reads the rows from one table and
inserts them into the new table all in a single operation.

INSERT INTO NewPeople (Name, Weight, Age)
SELECT Name, Weight, Age FROM People

On a table of 86 columns and 6,700 rows, using TBatch-
Move to copy data took 4 minutes and 49 seconds. Copy-
ing the same data with INSERT/SELECT took... 7 seconds.
The series of individual INSERT statements sent by
TBatchMove was over 40 times slower. For this test the
application was on the same machine as the SQL
server, so we can’t even blame network overhead for
the TBatchMove to fetch each row from the server and
send it back in an INSERT statement.

But how can we mimic TBatchMove’s ability to recode
null values to a column default? Since there is only one
SQL statement handling all the rows, we certainly can’t
selectively omit columns when the row happens to
contain a null value. Fortunately, most dialects of SQL
include a function called Coalesce which accepts any
number of parameters and returns the first one it finds
which is not null. So if we use Coalesce in the select list
and pass in the column and the column’s default value,
what we get back is the column value if it is not null and
the column default value if it is. Perfect. Figure 2 shows
the INSERT statement and the resulting data.

TBatchMove still has some advantages. You can
collect key violation and problem records in a separate
file and continue processing, whereas the INSERT/
SELECT will abort (and rollback everything) on the first
problem. Also, TBatchMove can commit its work at
intervals throughout the process. INSERT/SELECT does
the entire job with a single transaction. On some
systems this may mean a requirement for transaction
log space on the disk at least as big as the table itself.
Our practice has been to use the INSERT/SELECTmethod
by default and switch to the slower TBatchMove if there
are problems to troubleshoot.

Steve Troxell is a software engineer with Ultimate
Software Group in the USA. He can be contacted via
email at Steve_Troxell@USGroup.com

INSERT INTO NewPeople (Name, Weight, Age)
SELECT Name, Coalesce(Weight, 0), Coalesce(Age, 0)
FROM People

Name Weight Age
==================== =========== ===========
John 165 27
Jane 0 25
George 180 0

➤ Figure 2Name Weight Age
==================== =========== ======
John 165 27
Jane (null) 25
George 180 (null)

INSERT INTO NewPeople (Name ,Weight ,Age)
VALUES (‘John’, 165, 27)

INSERT INTO NewPeople (Name ,Age)
VALUES (‘Jane’, 25)

INSERT INTO NewPeople (Name ,Weight)
VALUES (‘George’, 180)

➤ Figure 1

